This type of battery is the key component in many renewable energy systems. A deep cycle battery is used to store electricity and release a steady current over time. Unlike a car battery, which only releases a quick burst of energy to spark the ignition, a deep cycle battery is used when you require a sustained energy current—to power household appliances over the course of a day, for example.
For that reason, the solar battery and solar battery chargers are critical components that are heavily relied upon by solar power systems with energy storage. Although deep-cycle batteries are not one hundred percent efficient, they are predictable and stable enough for reliable long-term service.
Batteries the only method to store direct current (DC) energy that is suitable for solar. Other energy storage methods exist, but they do not have nearly enough storage capacity to feasibly power a home.
Think of your batteries like a bucket of energy, where the voltage is equal to pressure, and amperage equates to flow rate. Imagine slowly pouring water into a bucket that has a small hole on the bottom. As we pour the water into the bucket, its slow leak will mean that you’ll probably use 12 gallons of water to fill a 10 gallon bucket by the time it is full.
Similarly, it takes more energy to charge a battery than the deep cycle battery will store. The size of your metaphorical bucket is like the amp-hour capacity of a battery bank. Amp-hour is the unit of measurement used to express the storage capacity of deep cycle batteries.
The Amp-hour rating, written as Ah, will tell you how much amperage is available when discharged from your battery evenly over a 20-hour period. Twenty hours has been the standard time length for rating batteries, although shorter or longer time variables may be used depending on the application.
Lifespan refers to how long your deep cycle battery lasts before it dies. You can control the lifespan to some extent with the right habits. Most energy loss that happens while charging and discharging batteries is due to internal resistance, which is eventually wasted as heat.
Deep cycle batteries used in renewable energy applications are designed to provide many years of reliable performance – with proper care and maintenance. Just as your car engine may live or die by your care, how well you monitor the health of your solar battery plays a major role in its lifespan.
Toiling over your battery bank daily with complex gadgets and a gallon of distilled water, however, is not necessary. The most common causes of premature battery failure include loss of electrolyte due to heat or overcharging, undercharging, excessive vibration, freezing or extremely high temperatures, and using tap water among other factors.
As we mentioned earlier, the right maintenance is key to extending the life of a battery used in solar power.
For instance, flooded solar batteries need to be checked regularly to make sure electrolyte levels are full. The chemical reaction inside a wet or flooded battery releases gases, as water molecules are split into hydrogen and oxygen. This, in turn, consumes water and creates the need to replace it regularly. Only distilled water should ever be used in batteries, and you should never add any kind of acid solution.
Deep cycle battery maintenance should also include upkeep on important connections. The connections from battery to battery and to the charging and load circuits should always be kept clean and free of corrosion. Corrosion is created upon charging, when a slight acid mist forms as the electrolyte bubbles.
Corrosion buildup will create a good deal of electrical resistance, eventually contributing to a shortened battery life (as well as causing unwanted malfunctions). A good way to keep up on the terminals is to regularly clean them with a baking soda solution.
Scan to wechat :